M.Math. Algebra II - Midsemestral Exam
 February 26, 2020
 Instructor - B. Sury Maximum Marks 120 - Be BRIEF!
 You may quote and use without proof results which are not almost equivalent to the given problem.

Q 1.
(8 + 12 marks)
(a) If L / K is a finite extension and A is an intermediate subring (that is, $K \subseteq A \subseteq L$), prove that A must be a field.
(b) If f is an irreducible polynomial of degree n over a field K, then prove that its splitting field over K has degree dividing n !.

OR
(10+10 marks)
(a) Show that the splitting of the following polynomial $x^{4}+x^{2}+1$ over \mathbb{Q} is generated by a primitive cube root of unity.
(b) Determine the cardinality of the splitting field of $x^{3}-2$ over \mathbb{F}_{7}.

Q 2.

(19 marks)
If K is an extension of degree 6 over \mathbb{Q}, prove that the polynomial $f(X)=$ $X^{5}-2$ must be irreducible in $K[X]$.

OR
(21 marks)
Let $a \in K$ where char $K=p$. Let $f=X^{p}-X-a \in K[X]$. Show that each field extension L of K has the property that either f has no roots in L or it splits into linear factors over L.

Q 3.

(19 marks)
Suppose L / K is an algebraic extension and let $a \in L$. If a is purely inseparable (that is, $\min (a, K)$ has only one root), prove that either $a \in K$ or K must have prime characteristic p and $a^{p^{n}} \in K$ for some n.

OR

(21 marks)
Prove that if L / K is an algebraic extension, and S is the separable closure of L over K, then L is purely inseparable over S.

Q 4.

(20 marks)
Let L / K be a separable extension of degree n. Suppose $\sigma_{1}, \cdots, \sigma_{n}$ are the K-algebra homomorphisms from L into an algebraic closure \bar{K} containing L. For any n-tuple $\left(a_{1}, \cdots, a_{n}\right) \in L^{n}$, show that the matrix whose (i, j)-th entry is $\operatorname{tr}_{L / K}\left(a_{i} a_{j}\right)$ has determinant equal to $\operatorname{det} A^{2}$ where A is the matrix with (i, j)-th entry $\sigma_{i}\left(a_{j}\right)$.

OR

(18 marks)
Let $K=\mathbb{Q}\left(e^{2 i \pi / p}\right)$ where p is an odd prime. Let $E=K \cap \mathbb{R}$. Determine $N_{K / E}\left(e^{2 i \pi / p}\right)$. Further, find an element t of K with $N_{K / \mathbb{Q}}(t)=p$.

Q 5.

(20 marks)
If $f \in \mathbb{Q}[X]$ has splitting field of odd degree over \mathbb{Q}, prove that all the roots of f must be real.

OR

(20 marks)
If K is the splitting field of an irreducible polynomial $f \in \mathbb{Q}[X]$ such that all subgroups of $\operatorname{Gal}(K / \mathbb{Q})$ are normal, prove that $K=\mathbb{Q}(\alpha)$ for ANY root of f in K.

Q 6.

$(3+3+4+5+6)$
Give examples (no need to prove) of field extensions L / K with:
(i) L / K normal but not Galois.
(ii) L / K separable but not Galois.
(iii) $[L: K]$ finite, but with infinitely many intermediate extensions.
(iv) L / K infinite, but with L / E finite for every intermediate extension $E \neq$ K.
(v) An infinite algebraic extension of \mathbb{F}_{p} which is not algebraically closed.

OR

(20 marks)
Let $f_{1}, f_{2} \in K[X]$, where K is an arbitrary field. Let α be a root of f_{1} in a fixed algebraic closure of K. Then, the composition $f_{1} \circ f_{2}$ is irreducible over K if, and only if, f_{1} is irreducible over K and $f_{2}-\alpha$ is irreducible over $K(\alpha)$.

OR
(20 marks)
Show that for any $n \geq 1$, the field $\mathbb{C}(X)$ is Galois over $\mathbb{C}\left(X^{n}+X^{-n}\right)$ with Galois group D_{n}.

